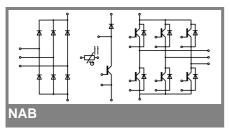


MiniSKiiP® 3

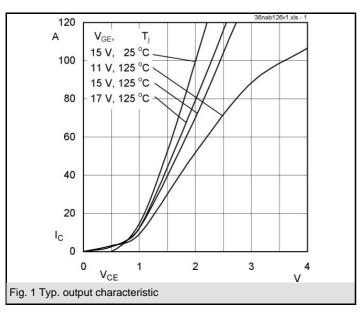
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter **SKIIP 36NAB126V1**

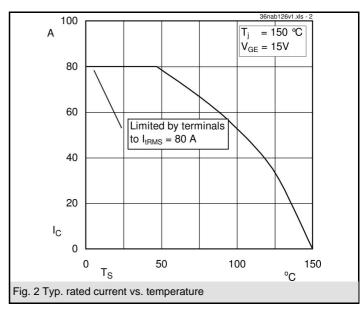
Features

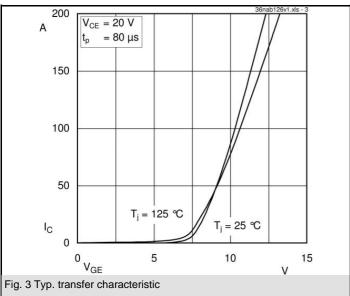

- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

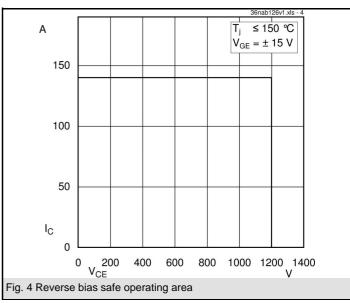
Typical Applications*

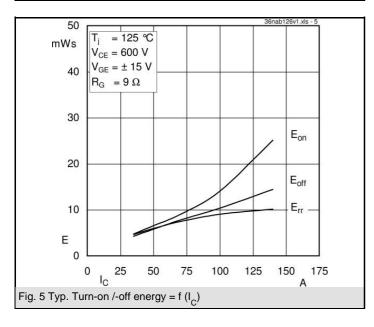
- Inverter up to 36 kVA
- Typical motor power 18,5 kW

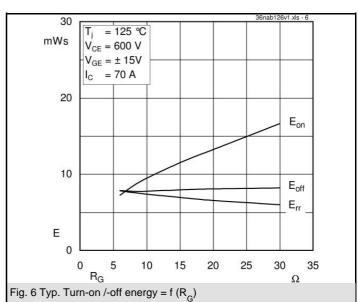

Remarks

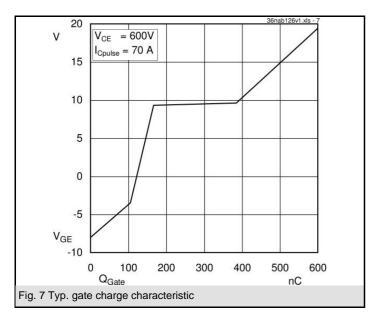

• V_{CEsat} , V_F = chip level value

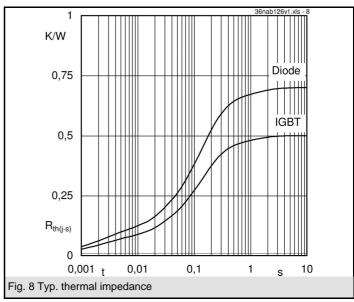


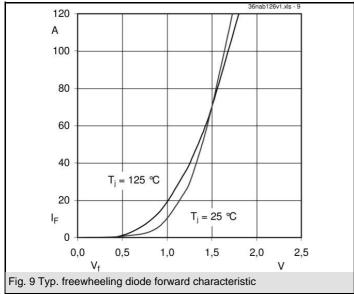

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT - Inverter, Chopper								
V_{CES}		1200	V					
I _C	T _s = 25 (70) °C	88 (66)	Α					
I _{CRM}		140	Α					
V_{GES}		± 20	V					
T _j		- 40 + 150	°C					
Diode - Inverter, Chopper								
I _F	T _s = 25 (70) °C	91 (68)	Α					
I _{FRM}		140	Α					
T _j		- 40 + 150	°C					
Diode - Rectifier								
V_{RRM}		1600	V					
I _F	T _s = 70 °C	61	Α					
I _{FSM}	$t_{\rm p}$ = 10 ms, sin 180 °, $T_{\rm i}$ = 25 °C	700	Α					
i²t	$t_{\rm D}^{\rm r}$ = 10 ms, sin 180 °, $T_{\rm i}$ = 25 °C	2400	A²s					
T_j	,	- 40 + 150	°C					
Module	•	•	•					
I _{tRMS}	per power terminal (20 A / spring)	80	Α					
T _{stg}		- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

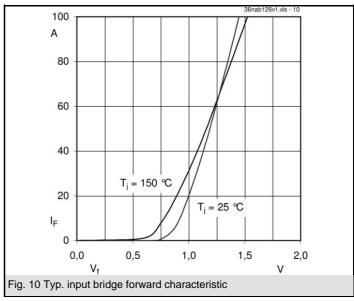

Characteristics			T _s = 25 °C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units			
IGBT - Inverter, Chopper									
V_{CEsat} $V_{GE(th)}$ $V_{CE(TO)}$ r_{T}	$I_{Cnom} = 70 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $V_{GE} = V_{CE}, I_C = 3 \text{ mA}$ $T_j = 25 (125) ^{\circ}\text{C}$ $T_j = 25 (125) ^{\circ}\text{C}$ $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		5	1,7 (2) 5,8 1 (0,9) 10 (16) 4,8	2,1 (2,4) 6,5 1,2 (1,1) 13 (19)	V V ν mΩ nF			
C_{ies} C_{oes} C_{res} $R_{\text{th(j-s)}}$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ per IGBT			1 0,6 0,5		nF nF K/W			
$\begin{aligned} & t_{d(on)} \\ & t_{r} \\ & t_{d(off)} \\ & t_{f} \\ & E_{on} \\ & E_{off} \end{aligned}$	under following conditions V_{CC} = 600 V, V_{GE} = \pm 15 V I_{Cnom} = 70 A, T_j = 125°C R_{Gon} = R_{Goff} = 9 Ω inductive load			80 25 390 90 9 7,7		ns ns ns ns mJ			
	nverter, Chopper								
$\begin{aligned} & V_{F} = V_{EC} \\ & V_{(TO)} \\ & r_{T} \\ & R_{th(j-s)} \\ & I_{RRM} \\ & Q_{rr} \\ & E_{rr} \end{aligned}$	$\begin{split} &I_{Fnom} = 70 \text{ A, } T_j = 25 \text{ (125) } ^{\circ}\text{C} \\ &T_j = 25 \text{ (125) } ^{\circ}\text{C} \\ &T_j = 25 \text{ (125) } ^{\circ}\text{C} \\ &\text{per diode} \\ \\ &\text{under following conditions} \\ &I_{Fnom} = 70 \text{ A, } V_R = 600 \text{ V} \\ &V_{GE} = 0 \text{ V, } T_j = 125 ^{\circ}\text{C} \\ &\text{di}_F/\text{dt} = 2000 \text{ A/}\mu\text{s} \end{split}$			1,5 (1,5) 1 (0,8) 7,1 (10) 0,7 77 18 7,5	1,7 (1,7) 1,1 (0,9) 8,6 (11)	V V mΩ K/W A μC mJ			
Diode - R									
V_{F} $V_{(TO)}$ r_{T} $R_{th(j-s)}$	$I_{Fnom} = 35 \text{ A, } T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$ per diode			1,1 0,8 11 0,9		V V mΩ K/W			
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C			1000(1670)		Ω			
Mechanic w			2	95	2.5	g			
M_s	Mounting torque		2		2,5	Nm			

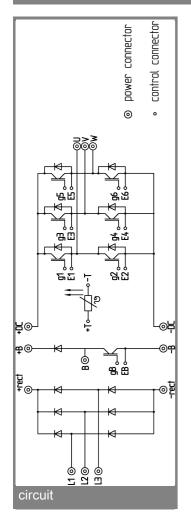


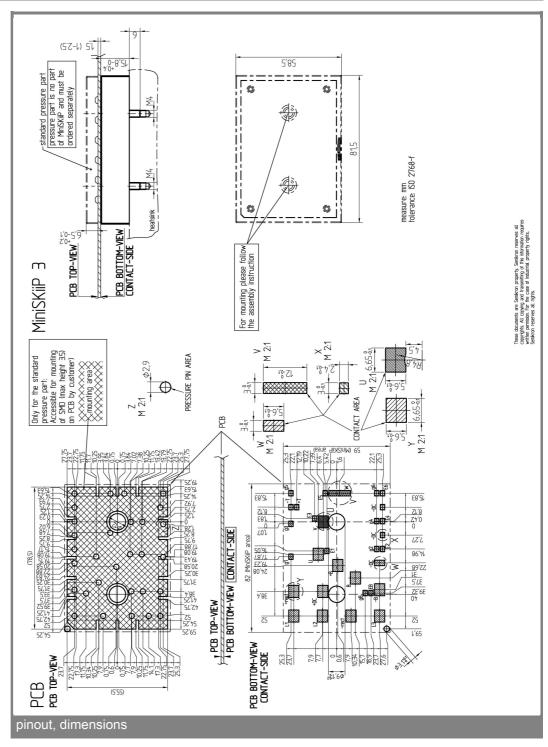












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.